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Abstract

This article presents an approximate alternative to
non-linear predictive control. This alternative is based
on an iterative linearisation of the response of the
model, so that the responses from the closed loop are
the same as those obtained with the non-linear
method, but with a much lower computation delay
and better optimisation tools.

In this case, this method has been applied to an
ethanol distillation column.

For this purpose, the process has been developed in
EcosimPro language, EL. The non-linear predictive
control has been developed in C++ and it is called
from EcosimPro.
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1. INTRODUCTION

Model-based process control (MPC) is renowned
worldwide as a tool capable of solving a great
number of problems concerning multivariable
controllers with restrictions. However, most of the
industrial controllers are based on linear models,
which limit the application of this type of control.

In recent years, non-linear model predictive control
(NMPC) has been studied, both from the point of
view of its properties (Chen et al. 1998) and of its
implementation.

A comparison between MPC with NMPC shows that
while the MPC with restrictions may solve an
associated optimisation problem during each
sampling period with QP or LP algorithms, the
NMPC relies on non-linear programming methods

(NPL) such as SQP, which require more CPU
capacity.

Many solutions have been developed to deal with this
problem, including the well-known simultaneous and
sequential approximations.

The sequential solution solves the model by
integrating it into each iteration of the optimisation
routine. The only degree of freedom the NLP has are
the control parameters. The simulation and
optimisation calculations are performed sequentially
(one after the other).

On the other hand, simultaneous solving of the model
and optimisation consider the status model and the
optimisation as decision variables, and the model
equations are added to the optimisation problem as
equality restrictions. This increases the size of the
optimisation problem until a balance is struck
between the two approaches.

In both cases the difficulty when implementing
NMPC in a real process lies in the long computation
delay.

Many alternatives have been proposed to
conventional NMPC to solve this problem, including
the NMPC techniques based on model linearisation.

This article also includes a second approximation (De
Keyser, 1998), which applies a linear linearisation of
the process in each sampling period to calculate an
‘optimised response’, similar to the ‘forced response’
of the linear MPC. This procedure is applied
iteratively until the same non-linear solution is
reached.

A description of the iterative linearisation is set out
below, as well as a comparison between the NMPC
that uses a sequential approach, and a version of the
iterative linearisation.
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To do this, the control objectives of an ethanol
distillation column have been used as a basis, and a
description of the model developed has been
included.

2. DESCRIPTION OF THE PROCESS

2.1 Distillation columns

Distillation is probably one of the most widespread
operations in chemical industries. It can be used to
separate different components in a current or to purify
intermediate and end products. Its application ranges
from alcohol distillation to petroleum cracking.

This study is centred on a high-purity ethanol
distillation column which forms part of the
distillation section of a sugar mill.

This case deals with the fermentation of sugars of
which the end product is alcohol. The alcohol is
subsequently separated from the rest of the
components by means of a series of distillation
processes.

Figure 1 shows a diagram of the rectifying column
used as a basis for the study. The feed is a mix of
three components: water, ethanol and propanol.
Alcohol is obtained mainly from a side extraction at
the top of the column.

There are also other secondary side extractions
located several plates above the feed. These
extractions are aimed at preventing isoamyl
compounds from reaching the head of the column.

The column has a total of 82 plates, and the chemical
compounds that are separated combine to form
azeotropes, making the operation more complex.
The purpose of the controller is to maintain the molar
fraction of ethanol at the bottom of the column and
the molar fraction of water at the head as close as
possible to their respective setpoints.

In order to achieve this, the flow of neutral alcohol
from the side extraction and the flow of steam into
the boiler have been selected as manipulated
variables.

The levels at the bottom of the column and in the
accumulator are also controlled, and the current at the
bottom of the column and the reflux current are also
manipulated in each case.

Fig. 1: Simplified diagram of a neutral alcohol
distillation column

2.2 Process model

A detailed model of the process has been developed
and the results have been compared with real plant
data.

The mathematical model developed must represent
the dynamic behaviour of the real process. A
compromise must be reached between the accuracy in
the approach of the model and the similarity between
its response and the response of the process, as a
function of the means available to solve the model.

The following hypotheses have been proposed:

1. Feed on a single plate
2. The feed enters as saturated liquid, although

thought is given to the possibility of it being
partially or totally vaporised

3. Neutral alcohol is extracted from the side of the
penultimate plate

4. There are no heat losses. The column is adiabatic
5. The condenser is total, so the composition of the

steam exiting the column through the head will
be the same as that of the reflux and distillate
current

6. There is no boiler, but a direct water vapour
injection instead

7. A non-constant steam flow is considered,
calculated on the basis of the energy balance
established for each of the plates

8. The total loss of pressure from the column is
distributed linearly amongst all the plates

9. The flow of liquid is calculated on the basis of
the Francis formula for spillways

10. The liquid accumulated in each plate cannot be
compressed. Furthermore, it it is a perfect mix
(the composition will be the same at all points)
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11. The liquid and steam exiting the plate have
thermal equilibrium and are at the same
temperature and pressure

12. The liquid and steam phases exiting the plate do
not have phase equilibrium because a Murphree
efficiency has been defined

13. The liquid-steam equilibrium is represented
taking the following into consideration:

- Ideal steam phase
- Non-ideal liquid phase: the Wilson

model is used to calculate the activity
coefficient

14. The dead time in the steam current from the last
plate of the column to the condenser is
disregarded, as is the dead time in the return
current of the reflux at the head of the column

15. The dynamics of the condenser are considered in
the development of the model of the distillation
column

16. No steam accumulation is considered throughout
the system

The equations that represent the behaviour of a
generic plate are the same for the whole column.

 Overall mass balance:
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n SVLFVL
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dM

−−−++= −+ 11 (1)

where:
nM  = mass of liquid accumulated on plate n (kg)

1+nL = liquid that falls onto plate n from plate n+1
(kg/s)

1−nV  = steam flow from plate n-1 (kg/s)

nL  = liquid that exits plate n (kg/s)

nV  = steam flow that exits plate n (kg/s)
Fn = feed flow from plate n (kg/s)
Sn =  side extraction onto plate n (kg/s)

 Overall mass balance at component (j-1):
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where:
j

nx  = molar fraction of component j in the liquid on
plate n

j
nx 1+  = molar fraction of component j in the liquid

flow of plate n+1
j

ny 1−  = molar fraction of component j in the steam
flow of plate n-1

y
ny  = molar fraction of component j in the steam flow

of plate n
j

nz = molar fraction of component j in the feed flow
of plate n

The above balance is established for all components
except one, which is calculated on the basis of:
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 Overall energy balance:
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where:
nh  = enthalpy of the liquid on plate n (kJ/kg)

1+nh  = enthalpy of the liquid on plate n+1 (kJ/kg)

nH  = enthalpy of the steam on plate n (kJ/kg)

1−nH  =enthalpy of the steam on plate n-1 (kJ/kg)

The changes in the specific enthalpy of the liquid
phase are generally very small in comparison with the
total enthalpy of the plate. This means that the energy
balance may be normally reduced to an algebraic
equation used as a basis for the calculation of the
steam flow that exits the plate. The final energy
balance is therefore as follows:
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 Calculation of the temperature.

The temperature in each plate is not obtained on the
basis of the energy balance, as is the case at the
bottom of the column. Instead, the temperature of the
bubble (the temperature which is in equilibrium with
a known composition of the liquid at a certain
pressure, also known) is calculated.

The calculation algorithm in each plate therefore
iterates on the temperature until the sum of the
compositions of the steam phase of plate N equals 1.
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 Equilibrium ratio between the liquid–steam
phases:
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where:
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*
, jny  = molar fraction of component j on plate n in

equilibrium with j
nx

j
nγ  = activity coefficient of component j on plate n
sat

jnP ,  = steam pressure of component j on plate n (bar)

nP  = total pressure on plate n (bar)
j

nx  = molar fraction of component j in the liquid on
plate n

 Total pressure on plate n:

PPP nn ∆+= +1 (8)

where:
nP  = total pressure on plate n (bar)

1+nP  = total pressure on plate n+1 (bar)

nP∆  = pressure loss between plate n and n+1 (bar)

 Pressure loss on the plate

The distribution of the pressure loss is considered
linear throughout the whole column, and directly
proportional to the flow of superheated steam.

2
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where:
V0 = flow of superheated steam (m3/h)
K = proportionality constant (m3/bar·h)

 Flow of liquid that exits plate n:

Calculated on the basis of the Francis formula for
segmented spillways:

3/2
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where:
owh = height of liquid over spillway crest (mm)

Q  = liquid that falls from the spillway (m3/s)

wL  = length of the spillway (m)

The flow of liquid that falls onto a lower plate is thus:

5.1
, )(8482.1 nowwn hLQ = (11)

where:
nQ  = liquid that exits plate n (m3/s)

wL  = length of the spillway (m)

nowh ,  = height of liquid over spillway crest (m)
Calculated using the following expression:
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h
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where:
nVol  = volume of liquid on plate n (m3)

platoV  = volume of plate (m3)

platoA  = active area of the plate (m2)

 Steam flow exiting plate n:

As mentioned above, the steam flow to the next plate
is calculated using the energy balance in steady state.

n
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Fig. 2: Diagram of a generic plate

The mathematical characteristics of the model once it
is implemented in the EcosimPro modelling language
are the following:

No. of equations: 7217
No. of subsystems of coupled equations: 85

- Linear: 0
- Non-linear: 85

No. of explicit variables: 6870
No. of derived variables: 264
No. of algebraic variables: 83
No. of boundary variables: 11
No. status variables: 347
Size of the Jacobian matrix: 347×347
Spreading f. of the Jacobian matrix: 62.2088%

3. NON-LINEAR PREDICTIVE
CONTROL

Non-linear model-based predictive control (NMPC)
is a natural progression of the linear model-based
predictive control technique (MPC). In NMPC, the
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algorithm is also based on the use of an internal
process model that includes the main characteristics
of the process.

As mentioned in the introduction, two different
formulae of the NMPC are going to be compared.
One is the algorithm of the pure NMPC, and the other
is an iterative linearisation technique.

3.1 NMPC Controller

The purpose of non-linear model-based predictive
control (NMPC) is to find the optimum sequence of
the values of the manipulated variables so that a
function is minimised. This function is calculated on
the basis of a desired trajectory of the outlet
[output???] variables along a prediction horizon.

The cost function is the integral of the squares of the
waste resulting from the difference between the
predicted model outlets [outputs???] (ypred) and the
reference values (r) during prediction time N2τ
(where N2 is the prediction horizon and τ is the
sampling period).

The following is a standard formula:
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The change in manipulated variable u is also included
in the minimisation function.

Parametrisation of the manipulated variables is
necessary because an infinite number of decision
variables could otherwise appear for the problem.

A common solution is the discretisation of the
manipulated variable u along the control horizon (Nu)
when the input variables remain constant during a τ
sampling period:

u(t)=u(k), kτ ≤ t<(k+1)τ
u(k) = u(Nu-1) for all k>Nu-1

The minimisation of equation (14) is subject to the
continuous model equations and the common
restrictions that apply both to manipulated and
controlled variables:
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Only the first of the control movements is
implemented out of all the sequence along the control
horizon.

Within this schema, the process model is used to
calculate the predictions of the outlet [output???]
variables (ypred(t)), required to minimise equation 14
(Fig. 3).

Fig. 3: Implementation of the non-linear controller

In this formula, the model equations are not
considered explicit restrictions within the
optimisation problem, and the only decision variables
are the manipulated variables.

The function of the process simulation is to integrate
the model equations along the prediction horizon
taking the current state of the process as input
conditions and to evaluate the target function
formulated at the end of each integration.

All of the above enables a non-linear problem to be
programmed with a generic formula, such as the
minimisation in real time of a non-linear target
function with restrictions.

3.2 Formulation of a non-linear iterative
predictive controller (EPSAC)

The main idea behind this formula is to draw
non-linear predictions closer by means of iterative
linearisation around future trajectories so that this
linearisation reaches the same optimum non-linear
solution.

In order to achieve this, the sequence of future values
of the manipulated variables is considered the sum of
base future control actions 0),/( ≥+ ktktubase , and
optimised future control actions,

10),/( −≤≤+ uNktktuδ  :

)/()/()/( tktutktutktu base +++=+ δ (16)

The predictions of the output variables can therefore
be considered as the sum of two effects:
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The first component, )/( tktybase + , is calculated by
using the non-linear model together with the known
sequence of the manipulated variable,

)/( tktubase +  as inputs for the model.

The second component, )/( tktyoptimize + , is the

result of a series of impulse and step inputs (De
Keyser, 1998):
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where parameters 
2,...,..,, 21 Nk hhhh  are the

coefficients of the responses of the system to a single
impulse in the current operating conditions.
The values of gk are the coefficients of the response to
a single step.

If a matrix notation is used, equation 17 would be as
follows:
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where:
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The ratio between control actions ∆u and δu is as
follows:
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where matrix A and vector b are provided by:
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The coefficients of matrix G are calculated using the
linearised model on the current status for each
sampling period.

However, it is difficult to obtain model linearisation
for a complex dynamic process. Thus, a possible
alternative has been developed, consisting in the use
of the non-linear model to calculate coefficients hk
and gk by means of model simulation.

Taking equation 21 into consideration, and keeping in
mind that 1−−= kkk ggh , equation 18 may be
rewritten as follows:
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The step response coefficients may be calculated for a
sampling period by simulating the non-linear process
model with a specific sequence of control actions,

)t/kt(u* + , taking the current state of the process as
an initial condition and evaluating the predictions as
well, )/(* tkty + .

The following is a sequence of control actions that
could be selected: )t(u)1t(u *∆+− .
With this sequence, and taking into consideration that

)/()/()/( ** tktytktytkty optimizebase +++=+

(24)

the gk coefficients verify the following expression:
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Finally, the cost function, which needs to be
minimised, turns out to be a U square function.

[ ] [ ]

( ) ( ) ( ) ( )bAUbAUGUYRGUYR +++−−−−

=+∆++−+= ∑∑
−

==

TT

N

k

N

Nk

u

tktutktrtktyJ

βγ

βγ
1

0

22 )/()/()/(
2

1

(27)

As regards the optimisation, the minimisation of J is
subjected to the restrictions of (10). This problem is
solved with simple techniques of quadratic
programming (QP).

While 0)/( ≠+ tktuδ , controls
)/()/()/( tktutktutktu base +++=+ δ  are

suboptimum, because approximation is based on the
principle of overlapping (12). However, they may
converge in the optimum controls by iteratively
redefining )/()/( tktutktubase +≡+  and
recalculating )/( tktu +δ  and )/( tktu +  until

0)/( ≈+ tktuδ , so that )/( tktyoptimize +  is

practically zero.

In order to reduce the number of iterations, the initial
value of )/( tktubase +  is important. A simple and
effective choice (De Keyser, 1998) is to start with the
optimum control policy derived from the previous
step )1/()/( −+≡+ tktutktubase . This strategy
has been applied in this article.

4. RESULTS OF THE SIMULATION

Extensive testing has been performed to compare the
standard NMPC with the non-linear EPSAC, both
from the point of view of computation delay and
efficiency.

The sampling period is 5 minutes, while the rest of
the parameters are N2={15,15}, Nu={1,1}, γ={5,1},
β={0,0}.

The restrictions of the manipulated variables were set
at }7000,2000{min =u , }13000,5000{max =u  and
their changes limited to }1500,150{min −−=∆u ;

}1500,150{max =∆u .

Additionally, the restrictions for the controlled
variables are }0,0{min =y  and }4.0,05.0{max =y .

In these simulations it is assumed that measurable
process statuses are available at tk, for example, and
that the initial condition is known in each iteration.

Changes in the reference of the controlled
variables

Variations for both controlled variables have been
simulated over a period of 4.5 hours, and the
behaviour obtained by both controllers was similar.
Fig. 4 shows how the controller tries to make the
ethanol concentration at the bottom of the column
follow the change in the setpoint from 0.0225 to
0.0246 at t=0.2 hours.

Fig. 5 shows the response of the second controlled
variable (concentration of water at the top of the
column) with respect to the change in the reference
from 0.1809 to 0.1654 at t=1.8 hours.

The two manipulated variables are shown in Figs. 6
and 7.

However, analysis of the calculations indicates a clear
advantage of the EPSAC controller. The calculation
time for the whole of the simulated experiment was
almost 12 hours in this case.

In the case of standard non-linear models, the
calculation time was 53 hours. The simulation was
run with EcosimPro in a PentiumIII PC with 800
MHz processing speed and 512 Mbytes RAM.
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0.0

0.0

0 1 2 3 4 5
TIME
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Linf[1
Lsup[1]
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Fig. 4 Reference changes of the first controlled
variable (ethanol concentration at bottom of  column)

0.0

0.1

0.2

0.3

0.4

0 1 2 3 4 5
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columna.imp_top.signal
Linf[2]
Lsup[2]
refy[2]

Fig. 5 Reference changes in 2nd controlled variable
(molar concentration of water at head of column).
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Fig. 6. The 1st manipulated variable (flow of neutral
alcohol).
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Fig. 7. The 2nd manipulated variable (steam
introduced into the evaporator)

5. CONCLUSIONS

Two non-linear predictive control models have been
compared taking a distillation column modelled in
EcosimPro as a basis.
One of them (non-linear EPSAC, based on an
iterative linearisation approach) has proved to be a
promising technique to reduce the computation time
by up to 25%.

However, in the process considered here the time
required to solve the problem of predictive control in
each sampling period is still too long to implement
the controller in real time.

The model proposed does not require that the non-
linear model be linearised; itonly requires calculation
of its impulse response, which may store a large
number of calculations in cases such as the one
presented above.

A further advantage of non-linear EPSAC is the use
of more efficient codes such as QP instead of SQP

methods. Greater effort is required to put NMPC into
practice when it is based on complex models such as
the one presented in this article.
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