C19

PARAMETER OPTIMISATION AND ADJUSTMENT BY THE SIMPLEX METHOD (Nelder-Mead)

José Luis Martínez González, Universidad de Valladolid
jlumartinez@hotmail.com

Abstract

EcosimPro is an excellent simulation tool with great potential and versatility. Taking advantage of its potential, the EL language was used to implement the non-linear simplex method in order to optimise any type of objective function. Some examples will be given: the simulation of a discontinuous chemical reactor (batch) in which the coolant temperature is optimised to minimise the concentration of reagents or the operating time. But perhaps the most useful example for EcosimPro users is the simulation of a desorption column. Experimental data retrieved from a pilot plant was used in this simulation. In this case, the simplex method was used to adjust the parameters of the model.

The latter case is very useful because any simulation carried out with EcosimPro can be used to adjust the parameters and therefore the dynamic model can be validated.

Key words: optimisation; parameter adjustment; simplex method; restrictions; discretisation; finite differences; PDS

1 INTRODUCTION

The non-linear simplex method (Nelder-Mead) is a heuristic method of searching for the minimums of any N-dimensional function. Starting from a preliminary approximate point, the method searches the parametric hyperspace for values which minimise the objective function. It works on a geometrical basis; starting with the preliminary estimate and a known number of parameters to be optimised, N, the algorithm constructs the simplest polyhedron in the parametric hyperspace: the polyhedron has N+1 vertices where the objective function is evaluated and it is decided which new values of the parameters will better adjust to the pre-established objective. For example, to adjust two parameters the algorithm constructs a triangle on the vertices of which the objective function is evaluated and, based on the values, the polyhedron moves and distorts as it searches for the optimum.

Simplex methods with variable geometry are obtained with expansion after satisfactory reflection, or with contraction after erroneous reflection. An example of a biparametric adjustment is shown in the figure below. The reflection algorithm is:

\[
b_{ir} = \left(1 + \gamma_r \right) b_{rc} - \gamma_r b_{cmax}
\]

where \(b_{ir}, b_{cmax}, \) and \(b_c\) are the coordinates of the reflected point, of the point with the largest sum of deviations to the square (worst point), and of the centre point of the side opposite to this one, respectively (centroid); \(\gamma_r\) is a reflection factor.

The simplex methods are very effective, especially with a large number of parameters. For a problem with two parameters to be adjusted (see the figure below), a normal simplex is an equilateral triangle which, starting with the estimated values \(b_i^{(0)}\), is carried to the point of the \(\Phi\) (objective function) surface in the space of the parameters. During the search, \(\Phi\) is evaluated in each of the three vertices, and the triangle is reflected on exactly the opposite side to the greatest value of \(\Phi\). If after the reflection there is no reduction in \(\Phi\), then the size of the simplex reduces to allow a more precise location of the minimum.

Figure: Representation of the Simplex Method. The numbers represent the reflection numbers.
Centroid:
\[b_c = \frac{1}{N} \sum_{j \neq \text{max}} b_j \]

where \(b_k \) and \(\gamma_k \) have meanings which are analogous to those used in reflection or expansion.

The search algorithm for new points is summarised in the previous figure (where it is expressed as a maximisation algorithm and not as a minimisation algorithm like the one that is implemented\(^1\)!!); \(B \) corresponds to the point with the best objective function value, \(W \) to the point with the worst objective function value, \(N_w \) the second worst point. \(R \) reflection; \(E \) expansion; \(C^+ \) and \(C^- \) positive and negative contraction, respectively, and \(\bar{C} \) the centroid.

\[R = \bar{C} + \alpha(\bar{C} - W) \]
\[E = \bar{C} + \gamma(\bar{C} - W) \]
\[C^+ = \bar{C} + \beta^+(\bar{C} - W) \]
\[C^- = \bar{C} - \beta^-(\bar{C} - W) \]

Advantages of the simplex method:
- It is a heuristic method. It works on a geometrical basis and does not need to use derivatives of the objective function.
- It is extremely efficient, even for adjusting a large number of parameters.
- It can be used with very sinuous objective functions, so in the first iterations it makes a wider search for the minimum and easily avoids the location of local minimums.
- Easy to implement and easy to use, it is nonetheless highly efficient.

\(^1\)It is the same algorithm, but the way to select which is the best and worst point changes because in the minimisation the best point is that of the smallest objective function and in the maximisation it is the greatest objective function.
Disadvantages of the simplex method:
- It converges more slowly than other methods because it requires a greater number of iterations.

2 OPTIMISATION AND USE OF THE ALGORITHM

The algorithm has been programmed in the form of an EcosimPro experiment. The simulation that has been carried out is called from the experiment and the parameters indicated are optimised.

The simulation data output function must be called "y" (REAL y) and the adjustment parameters must form an array of real values called tau (REAL tau[npara]), where "npara" must take a determined whole number (for example, three parameters to be optimised, etc).

2.1 SIMULATION OF A DISCONTINUOUS CHEMICAL REACTOR (BATCH) AND OPTIMISATION OF OPERATING PARAMETERS

An exothermic reactor has been simulated. Establishing the balances of heat and energy, we obtain:

\[
\frac{dc}{dt} = - r(c, T)
\]

\[
\frac{dT}{dt} = J \cdot r(c, T) - f_k \cdot (T - Tr(t))
\]

\[
r(c, T) = A \cdot e^{-\frac{E}{T + 273.15}} \cdot c^n
\]

where the factors "J" and "f_k" represent the coefficients which take into account the generation of heat by reaction and the transmission of heat between the reactor and the coolant, respectively.

In this example the parameter to be optimised is the temperature of the coolant. A search will be made for the value of this temperature so that:

A. The final concentration of the reagents is minimised after a fixed time

B. The operating time is minimised to attain a determined conversion of reagents

Some restrictions\(^2\) have been imposed on the optimisation:

1. The temperature of the coolant (physical restriction external to the system) must be greater than 310 K and less than 335 K

2. The temperature of the reactor must at no time go beyond the simulation of the interval 309 – 351 K (restrictions internal to the system)

During the first instants of the reaction \((C_0 = 6; T_0 = 313)\) a great amount of heat is generated because the concentration of reagents is very high and therefore the kinetics is very fast. As these are consumed, so the reaction slows down and the reactor reaches lower temperatures. It is therefore necessary to regulate the coolant temperature so that the imposed restrictions are not exceeded and, at the same time, the cooling operation is capable of contributing as much heat as possible and thus accelerate the speed of reaction.

The optimum coolant temperature was recalculated at intervals of 0.5 h. The results are shown in the following figure:

As we can see, the reactor temperature obtained in the light of the optimum sequence of coolant temperatures found by the algorithm never exceeds the maximum temperature restriction of the reactor (351 K). The algorithm is capable of finding a series of coolant temperature values to offer a feasible solution to the restrictions imposed.

\[T_{\text{max}}\]

\(\text{The restrictions have been implemented as finite barriers of the objective function}\)
2.2 ADJUSTMENT OF PARAMETERS OF A DESORPTION COLUMN OF SUPERCRITICAL FLUIDS

The pilot plant operates in the laboratories of the Chemical Engineering Department of the University of Valladolid. It is designed to desorb the pollutant substances that impregnate soil exposed to hazardous chemical agents (regeneration of soil). To this end, a flow of supercritical CO\(_2\) is introduced, which acts as a solvent of these substances. It desorbs them from the sandy particles and carries them out of the system.

The model representing this system is a model in PDS. For an isothermal system it can be shown that the balances of matter throughout the column loaded with the polluted soil are:

Balance of pollutant in the supercritical phase

\[
\frac{\varepsilon}{\partial t} + \frac{u}{L} \frac{\partial c}{\partial z} = -k_g \cdot a \cdot (c - c^*) \\
\text{Prelim. cond. (t=0)} \quad C = 0 \\
\text{Boundary cond. in z=0} \quad C=C_{\text{entrada}} = 0
\]

Balance of pollutant in the solid phase

\[
(1-\varepsilon) \frac{\partial c_s}{\partial t} = -k_g \cdot a \cdot (c - c^*) \\
\text{Initial condition (t=0)} \quad C_s = C_{\text{so}}
\]

Desorption equilibrium at the inter-phase

\[
c^* = H \cdot c_s
\]

The equation in partial derivatives was discretised using the method of finite differences (with new internal points of discretisation \(C_1 \ldots C_n \)):

\[
\frac{\partial c}{\partial z} \approx \frac{c_i - c_{i-1}}{\Delta z}
\]

This is a very efficient method which is very easy to implement with the use of EcosimPro:

```
DATA
--Ajustar: h & kg
REAL tau[2]= ( 0.15 , 0.0015)
....

DECLS
REAL cliq[n+1]
REAL cso[n+1]
REAL y
...

INIT
FOR (i IN 2,n+1)
   cliq[i]=cliqIni
   cso[i]=csoIni
END FOR
y=0

CONTINUOUS
deltaz=1/(n+1)
cliq[1]=c_entrada -- Cond contorno z=0
cso[1]=cso[2] -- aproximacion ...

--Discretizacion por diferencias --finitas de los balances de materia

EXPAND_BLOCK ( i IN 2,n+1)
e*cliq[i]'+u/L*(cliq[i]-cliq[i-1])
/deltaz= - tau[2]*av*(cliq[i]-
tau[1]*cso[i]) -- Ccon en el liquido
(1-e)*cso[i]'=tau[2]*av*(cliq[i]-
tau[1]*cso[i]) -- Ccon en el solido

END EXPAND_BLOCK

-- Acumulacion de cliq a la salida
y'=cliq[n+1]

END COMPONENT
```

The adjustment of parameters in this case was reduced to only two: the coefficient of transfer of matter (\(k_g\)) and the equilibrium of solubility (\(h\)). However, the method programmed is designed for use with any multiparametric function without undue difficulty.

The following graph shows the experimental data, the preliminary adjustment curve (preliminary value of the optimisation method), and the final curve obtained for the concentration of accumulated pollutant that leaves the desorption column together with the supercritical CO\(_2\).

Values of the parameters:

\[
\begin{align*}
h &= 0.1149 \\
k_g &= 0.00152 \text{ min}^{-1}
\end{align*}
\]
Concentration of accumulated pollutant which leaves the system with the CO2

Experimental data:

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Accumulated Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.25</td>
</tr>
<tr>
<td>15</td>
<td>0.47</td>
</tr>
<tr>
<td>26</td>
<td>0.65</td>
</tr>
<tr>
<td>38.5</td>
<td>0.75</td>
</tr>
<tr>
<td>60</td>
<td>0.85</td>
</tr>
<tr>
<td>71.5</td>
<td>0.89</td>
</tr>
<tr>
<td>100</td>
<td>0.9</td>
</tr>
</tbody>
</table>

3 CONCLUSIONS

We have demonstrated the validity and reliability of the algorithm which was implemented. The code can easily be used by any EcosimPro user, because all that is required is the implementation of the objective function to be optimised in each particular case, and what’s more it is written in EL so no knowledge of external programming languages is necessary. The algorithm is written so that it will work with any number of parameters and it can be immediately inserted into an EcosimPro simulation.

Acknowledgements

I wish to thank Pedro Cobas for all the help he gave me when I was learning about EcosimPro; and special thanks to César de Prada for all that he has taught me in the field of simulation and process control.

References

Himmenblau, D.M. & Bischoff, K.B. Análisis y Simulacion de Procesos. Ed. Reverté

Nonlinear Analysis in Chemical Engineering. Finlayson, B.A. Ed. Prentice-Hall

ATTACHMENT: Simplex method code written in EL

In each particular case, the objective function has to be adjusted to the requirements of each problem. But the rest of the algorithm is completely valid. The number of parameters to be optimised must be defined (INTEGER npara =&&). A starting point to search for the parameters must be defined (REAL xo[&&]={.........}, where “&&” is the actual number of parameters to be optimised.

The size of all the matrices and vectors must be defined in the declaration section of the experiment, and therefore their dimensions must be given with concrete numbers without making reference to values like “npara =4, pej .”, but directly indicating the number of parameters (for example, a matrix with the dimensions N+1 will be declared as REAL values[4+1,4+1]).

Other constants must be given for each particular optimisation (maximum iterations, rupture conditions of the algorithm and scale factors, etc). The following is the code of a simplex method applied to the adjustment of the parameters in the simulation of the desorption column:
USE MATH
EXPERIMENT expl ON col_desorcion.simplex

-- IMPLEMENTACION DEL METODO SIMPLEX PARA MINIMIZACION de errores
--Calculo de parametros

DECLS

REAL peor "Valor de la F.O. en el peor punto"
REAL peor2 "Valor de la F.O. en el 2º peor punto"
REAL mejor "Valor de la F.O. en el mejor punto"
INTEGER pw "Posicion del peor punto en la matriz de puntos"
INTEGER pb_prev "Posicion del mejor en la iteracion anterior"
INTEGER pw_prev "Posicion del peor en la iteracion anterior"
INTEGER p = 1
REAL obj = 0.
REAL obj_prev = 0.
INTEGER iter=0
REAL suma_valores=0
REAL tfinal
REAL variac
REAL mejora_obj =100.
REAL mejora_para =100.
REAL para1
REAL para2
REAL paraall
REAL para22

-- VALORES A AJUSTAR EN CADA PROBLEMA:

INTEGER ndatos = 8 " Numero de datos"
INTEGER npara = 2
REAL
REAL datos[8,2]={{0,0},{5,0.25},{15,0.47},{26,0.65},{38.5,0.75},{60,0.85},{71.5,0.89},{100,0.90}}
REAL xo[2]= {0.25,0.015} --Valores inicial de los parametros
REAL y_ini= 0 --Condicion inicial para la funcion objetivo "y"

-- Para estimar los primeros puntos del simplex inicial
REAL f_escala= 1 REAL alfa = 1.
REAL beta_pos= 0.5
REAL beta_neg=0.5
REAL gamma = 2.
INTEGER iter_max=6*3
REAL cond_ruptura_obj=1.
REAL cond_ruptura_para=1.
REAL tolerancia_rup=0.001

--Matrices y vectores:ajustar dimens.
REAL valores[2+1,2+1]
REAL valores_prev[2+1,2+1]
REAL pref[2+1]
REAL pcont[2+1]
REAL pext[2+1]
REAL centroide[2+1]

INIT -- set initial values FOR variables
-- Dynamic variables
y = y_ini

BOUNDS -- set expressions FOR boundary variables: v = f(t,...)

BODY

REPORT_TABLE("reportAll", * *)
TIME = 0
TSTOP = 1.001*datos[ndatos,1]
tfinal=TSTOP
CINT = TSTOP

--La matriz "valores" almacena el valor de los n+1 puntos =j
--En la columna inicial(i=1) guarda el valor de la funcion obj. pasa ese
--punto=n+1 dimensiones

--Construccion de la matriz de parametros y valores de la funcion objetivo:

FOR (j IN 2,npara+1)
 FOR (i IN 2,npara+1)
 IF (j==2) THEN -- Pto. inicial xo
 valores[1,i]=xo[i-1]
 END IF
 IF (i==j) THEN -- Nuevos ptos. iniciales
 valores[j,i]=xo[i-1]+(sqrt(npara+1.)+npara-1)/(npara*sqrt(2.))*f_escala*xo[i-1]
 ELSE
 valores[j,i]=xo[i-1]+(sqrt(npara+1.)-1)/(npara*sqrt(2.))*f_escala*xo[i-1]
 END IF
 END FOR
END FOR

FOR (j IN 1,npara+1)
 --Evaluacion de la Funcion objetivo:
 FOR (k IN 2,npara+1)
 tau[k-1]=valores[j,k]
 END FOR
 obj=0.
p=1
 TIME =0
 y = y_ini
 WHILE(p <=ndatos)
 INTEG_TO(datos[p,1],CINT)
 obj=obj + (datos[p,2]-y)**2
 p= p+1
 END WHILE
 -- F.O en los nuevos puntos
 valores[j,1]=obj
END FOR

variac= 2*tolerancia_rup
WHILE(iter<iter_max OR (variac > tolerancia_rup OR (mejora_obj >cond_ruptura_obj
AND (mejora_para > cond_ruptura_para))))
 FOR (i IN 1,npara+1)
 FOR(j IN 1,npara+1)
 valores_prev[i,j]=valores[i,j]
 END FOR
 END FOR
 --Elegir el mejor, el peor y el segundo peor punto de "valores"
 mejor=min(valores[1,1],valores[2,1]) -- Menor valor de la F.O.
 peor=max(valores[1,1],valores[2,1]) -- Peor valor de la F.O.
 FOR (i IN 2,npara)
 mejor=min(mejor,valores[i+1,1])
 peor =max(peor,valores[i+1,1])
 END FOR
 pw=2
 pb=1
 pb_prev = pb
 pw_prev = pw
 FOR (i IN 1,npara+1)
IF(abs(mejor-valores[1,1]<1e-20) THEN
 pb = i -- Guarda la posicion del mejor punto
END IF

IF(abs(peor - valores[1,1])<1e-20) THEN
 pw = i -- Guarda la posicion (fila) del peor pto.
ELSE
 peor2=max(peor2,valores[1,1]) -- Segundo peor punto
END IF

PRINT("Función objetivo = $mejor")

--Calculo del centroide-----------------
FOR (i IN 2,npara+1)
 suma_valores=0
 FOR (j IN 1,npara+1)
 IF (j != pw) THEN
 suma_valores=suma_valores+valores[j,i]
 END IF
 END FOR
 centroide[i]=1/npara*suma_valores
END FOR

--Calculo del nuevo punto nuevo (reflexion) a partir del centroide y del peor
FOR (i IN 2,npara+1)
 pref[i]=valores[pw,i]+(1+alfa)*(centroide[i]-valores[pw,i])
END FOR

---Evaluacion de la Funcion objetivo:
FOR (k IN 2,npara+1)
 tau[k-1]=pref[k] --Asignacion de valor de parametro
END FOR

obj=0.
p=1
TIME =0
y = y_ini
WHILE(p <=ndatos)
 INTEG_TO(datos[p,1],CINT)
 obj=obj + (datos[p,2]-y)**2
 p= p+1
END WHILE

pref[1]=obj

---------Extension
FOR (i IN 2,npara+1)
 pext[i]=valores[pw,i]+(1+gamma)*(centroide[i]-valores[pw,i])
END FOR

---Evaluacion de la Funcion objetivo:
FOR (k IN 2,npara+1)
 tau[k-1]=pext[k] --Asignacion de valor de parametro
END FOR

obj=0.
p=1
TIME =0
y = y_ini
WHILE(p <=ndatos)
 INTEG_TO(datos[p,1],CINT)
 obj=obj + (datos[p,2]-y)**2
 p= p+1
END WHILE

pext[1]=obj

IF (pext[1] < pref[1]) THEN

--------Extension
FOR (i IN 2,npara+1)
 pext[i]=valores[pw,i]+(1+gamma)*(centroide[i]-valores[pw,i])
END FOR

---Evaluacion de la Funcion objetivo:
FOR (k IN 2,npara+1)
 tau[k-1]=pext[k] --Asignacion de valor de parametro
END FOR

obj=0.
p=1
TIME =0
y = y_ini
WHILE(p <=ndatos)
 INTEG_TO(datos[p,1],CINT)
 obj=obj + (datos[p,2]-y)**2
 p= p+1
END WHILE

pext[1]=obj

IF (pext[1] < pref[1]) THEN

FOR (i IN 1,npara+1)
valores[pw,i]=pext[i]

END FOR
PRINT(“Extensión”)
ELSE
FOR (i IN 1,npara+1)
valores[pw,i]=pref[i]
END FOR
PRINT(“Reflexión”)
END IF -- Final del IF de pext[1] < pref[1]
ELSE
-- Se compara el punto reflejado con el segundo peor punto
IF (pref[1]<peor2) THEN
FOR (i IN 1,npara+1)
valores[pw,i]=pref[i]
END FOR
PRINT(“Reflexión”)
ELSE
-- Se compara el punto reflejado con el peor punto
IF (pref[1] < peor) THEN
--------Contracción positiva
FOR (i IN 2,npara+1)
pcont[i]=valores[pw,i]+(1+beta_pos)*(centroide[i]-valores[pw,i])
END FOR
---Evaluacion de la Funcion objetivo:
FOR (k IN 2,npara+1)
tau[k-1]=pcont[k] --Asignacion de valor de parametos
END FOR
obj=0.
p=1
TIME =0
y = y_ini
WHILE (p <=ndatos)
 INTEG_TO(datos[p,1],CINT)
 obj=obj + (datos[p,2]-y)**2
 p= p+1
END WHILE

pcont[1]=obj

FOR (i IN 1,npara+1)
valores[pw,i]=pcont[i]
END FOR
PRINT("Contracción positiva")
ELSE
--Contracción negativa
FOR (i IN 2,npara+1)
pcont[i]=valores[pw,i]+(1+beta_neg)*(centroide[i]-valores[pw,i])
END FOR
---Evaluacion de la Funcion objetivo:
FOR (k IN 2,npara+1)
tau[k-1]=pcont[k] --Asignacion de valor de parametos
END FOR
obj=0.
p=1
TIME =0
y = y_ini
WHILE (p <=ndatos)
 INTEG_TO(datos[p,1],CINT)
 obj=obj + (datos[p,2]-y)**2
 p= p+1
END WHILE

pcont[1]=obj

FOR (i IN 1,npara+1)
valores[pw,i]=pcont[i]
END FOR
PRINT("Contracción negativa")
END IF -- Final del IF de pref[1] < peor
END IF -- Final del IF de pref[1] < peor2
END IF -- Final del IF de pref[1] < mejor
iter=iter+1

-- Condiciones de ruptura del bucle while

IF (iter ==1) THEN
 mejora_obj =2*cond_ruptura_obj
 mejora_para=2*cond_ruptura_para
 variac=2*tolerancia_rup
 obj_prev=mejor
ELSE
 IF abs(mejor)>1e-20 THEN -- Evita divisiones por cero
 mejora_obj=(100*(obj_prev-mejor)/mejor)
 ELSE
 mejora_obj= 2*cond_ruptura_obj --(100*(obj_prev-mejor))
 END IF
 mejora_para=0.
 variac=0.
 FOR (i IN 2,npara+1)
 IF abs(valores[pw,i])>1e-20 THEN -- Evita divisiones por cero
 mejora_para=mejora_para+abs(100*(valores[pw,i]-valores_prev[pw,i])/valores[pw,i])
 ELSE
 mejora_para=2*cond_ruptura_para+abs(100*(valores[pw,i]-valores_prev[pw,i]))
 END IF
 variac=variac+abs(abs(valores[pb,i])-abs(valores[pw,i]))
 END FOR
 mejora_para=(1/npara)*mejora_para
 -- variac=(1/npara)*variac
 obj_prev=mejor
END IF

--IMPRIME RESULTADOS FINALES
PRINT("Función objetivo = "$mejor ")
paral=valores[pb,2]
parall=valores[pb,3]
para2=valores_prev[pw,2]
para22=valores_prev[pw,3]
PRINT("Iteración = "$iter")
PRINT("Porcentaje Mejora F.O. = "$mejora_obj")
PRINT("Porcentaje Mejora parameetros = "$mejora_para")
PRINT("Punto mejor: $paral , $parall F.O = "$mejor ")
PRINT("Punto peor : $para2 , $para22 F.O = "$peor ")

END WHILE
END EXPERIMENT